Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618956

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Rim , Neoplasias Renais/genética , Microambiente Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38187626

RESUMO

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

3.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38076958

RESUMO

Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.

4.
Cancer Discov ; 14(2): 348-361, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37966260

RESUMO

The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE: We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Hedgehog/genética , Neoplasias Pancreáticas/patologia , Fator A de Crescimento do Endotélio Vascular
5.
STAR Protoc ; 4(4): 102711, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37950862

RESUMO

Traditional 2D/3D co-culture models typically do not reflect the cellular heterogeneity of pancreatic ductal adenocarcinoma (PDAC) tumors, while in vivo models can be slow and ill-suited to mechanistic investigations. Here, we present a protocol for culturing murine PDAC explants and a corresponding human PDAC model using tissue slice explants. We describe steps for sponge production, preparation of media and materials, tissue collection, and sectioning. We then detail procedures for explant plating, daily culture, and collection of samples.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Ductos Pancreáticos , Técnicas de Cocultura
6.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993715

RESUMO

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Ácidos Oleicos , Animais , Bovinos , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Laticínios , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Leite/química , Neoplasias/dietoterapia , Neoplasias/imunologia , Ácidos Oleicos/farmacologia , Ácidos Oleicos/uso terapêutico , Carne Vermelha , Ovinos
7.
Cell Chem Biol ; 30(9): 1156-1168.e7, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37689063

RESUMO

A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.


Assuntos
Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala , Humanos , Linhagem Celular , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Curr Opin Biotechnol ; 83: 102970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494818

RESUMO

The tumor microenvironment (TME) plays a crucial role in regulating the state and function of all cell types residing in the tumor and thus impacts many aspects of tumor biology. The importance of the TME has led to an interest in characterizing the composition of the TME and how TME components regulate cancer and stromal cell biology. Tumor interstitial fluid (TIF) is the local perfusate of the TME that carries metabolites, electrolytes, and soluble macromolecules to tumor-resident cells. Recently, techniques to isolate TIF have been coupled with analytical techniques to interrogate the composition of TIF, providing new insight into TME composition. In this review, we will discuss what TIF studies indicate about TME composition and new avenues TIF analysis provides to delineate how the TME regulates tumor biology.


Assuntos
Líquido Extracelular , Neoplasias , Humanos , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Comunicação Celular
9.
Nature ; 618(7963): 151-158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198494

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , Humanos
10.
Elife ; 122023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254839

RESUMO

Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Aminoácidos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Arginina , Microambiente Tumoral
11.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909640

RESUMO

A challenge for screening new candidate drugs to treat cancer is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels to propagate cells. Which nutrients are available can influence how cancer cells use metabolism to proliferate and impact sensitivity to some drugs, but a general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To enable screening of compounds to determine how the nutrient environment impacts drug efficacy, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We used this system to screen several small molecule libraries and found that compounds targeting metabolic enzymes were enriched as having differential efficacy in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.

12.
PLoS Biol ; 20(9): e3001800, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36149877

RESUMO

The roles for glycolytic and respiratory metabolism in supporting in vivo tumor growth in different contexts are not well understood. In this issue of PLOS Biology, a new study reveals that primary and metastatic tumors demonstrate divergent metabolic requirements.


Assuntos
Mitocôndrias , Neoplasias , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Respiração
13.
Cancer Res ; 82(10): 1890-1908, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35315913

RESUMO

Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE: The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.


Assuntos
Neoplasias Pancreáticas , Proteína bcl-X , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Nutrientes , Oxigênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Microambiente Tumoral , Proteína bcl-X/metabolismo
14.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
15.
Cancer Immunol Res ; 9(4): 415-429, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33500272

RESUMO

Metabolic dysregulation is a hallmark of cancer. Many tumors exhibit auxotrophy for various amino acids, such as arginine, because they are unable to meet the demand for these amino acids through endogenous production. This vulnerability can be exploited by employing therapeutic strategies that deplete systemic arginine in order to limit the growth and survival of arginine auxotrophic tumors. Pegzilarginase, a human arginase-1 enzyme engineered to have superior stability and enzymatic activity relative to the native human arginase-1 enzyme, depletes systemic arginine by converting it to ornithine and urea. Therapeutic administration of pegzilarginase in the setting of arginine auxotrophic tumors exerts direct antitumor activity by starving the tumor of exogenous arginine. We hypothesized that in addition to this direct effect, pegzilarginase treatment indirectly augments antitumor immunity through increased antigen presentation, thus making pegzilarginase a prime candidate for combination therapy with immuno-oncology (I-O) agents. Tumor-bearing mice (CT26, MC38, and MCA-205) receiving pegzilarginase in combination with anti-PD-L1 or agonist anti-OX40 experienced significantly increased survival relative to animals receiving I-O monotherapy. Combination pegzilarginase/immunotherapy induced robust antitumor immunity characterized by increased intratumoral effector CD8+ T cells and M1 polarization of tumor-associated macrophages. Our data suggest potential mechanisms of synergy between pegzilarginase and I-O agents that include increased intratumoral MHC expression on both antigen-presenting cells and tumor cells, and increased presence of M1-like antitumor macrophages. These data support the clinical evaluation of I-O agents in conjunction with pegzilarginase for the treatment of patients with cancer.


Assuntos
Antineoplásicos/farmacologia , Arginase/farmacologia , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Receptores OX40/antagonistas & inibidores , Transferência Adotiva , Animais , Arginase/análise , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptores OX40/metabolismo
16.
Cancer Discov ; 11(2): 446-479, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127842

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Netrinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Imunossupressão , Apoio Nutricional , Microambiente Tumoral
17.
Nat Cancer ; 1(6): 589-602, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-34414377

RESUMO

Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.


Assuntos
Adenocarcinoma de Pulmão , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteínas de Membrana Transportadoras , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutação , Fator 2 Relacionado a NF-E2/genética
19.
Elife ; 82019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30990168

RESUMO

Cancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we utilized quantitative metabolomics methods to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors.


Assuntos
Líquido Extracelular/química , Neoplasias/patologia , Nutrientes/análise , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos/patologia , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Plasma/química
20.
Cell Metab ; 29(6): 1410-1421.e4, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905671

RESUMO

Tumors exhibit altered metabolism compared to normal tissues. Many cancers upregulate expression of serine synthesis pathway enzymes, and some tumors exhibit copy-number gain of the gene encoding the first enzyme in the pathway, phosphoglycerate dehydrogenase (PHGDH). However, whether increased serine synthesis promotes tumor growth and how serine synthesis benefits tumors is controversial. Here, we demonstrate that increased PHGDH expression promotes tumor progression in mouse models of melanoma and breast cancer, human tumor types that exhibit PHGDH copy-number gain. We measure circulating serine levels and find that PHGDH expression is necessary to support cell proliferation at lower physiological serine concentrations. Increased dietary serine or high PHGDH expression is sufficient to increase intracellular serine levels and support faster tumor growth. Together, these data suggest that physiological serine availability restrains tumor growth and argue that tumors arising in serine-limited environments acquire a fitness advantage by upregulating serine synthesis pathway enzymes.


Assuntos
Proliferação de Células , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Serina/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias/genética , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA